UPMC Hillman Cancer Center

Video Blogs

May 2017 — Novel Gene Editing Approach to Cancer Treatment Shows Promise in Mice

A novel gene therapy using CRISPR genome editing technology effectively targets cancer-causing “fusion genes” and improves survival in mouse models of aggressive liver and prostate cancers, UPCI researchers reported in a study published this month in Nature Biotechnology.

Fusion genes, which are often associated with cancer, form when two previously separate genes become joined together and produce an abnormal protein.The UPCI research team, led by Jian-Hua Luo, MD, PhD, Professor of Pathology and Director of the University of Pittsburgh High Throughput Genome Center, used viruses to deliver gene editing tools that cut out the mutated DNA of the fusion gene and replaced it with a gene that leads to death of the cancer cells.

Watch Dr. Luo discuss this research further in the video below, and read more here.

JW Player goes here


April 2017 — New Study Demonstrates Synergistic Anti-Cancer Effects of Oncolytic Virus Combined with Immune Checkpoint Inhibitor

Oncolytic viruses can selectively kill cancer cells and cancer-promoting cells, either directly by binding and infecting them, or indirectly by eliciting a targeted immune response against them. UPCI investigators have been examining the anti-cancer efficacy of an immune-stimulating vaccinia virus, vvDD, and found it to be safe in humans in a phase I clinical trial. However, the overall anti-cancer effects of this treatment were limited, especially in certain tumor types that are not commonly infiltrated by immune cells, such as colorectal cancer.

In recent pre-clinical studies, a research team led by David Bartlett, MD, Bernard Fisher Professor of Surgery, Professor of Clinical and Translational Science, Vice Chairman of Surgical Oncology and Gastrointestinal Services, and Director of the David C. Koch Regional Perfusion Cancer Therapy Center, demonstrated that vvDD treatment caused tumor and immune cells to increase production of the protein PD-L1, which is involved in immune suppression. When the investigators then combined vvDD therapy with a targeted checkpoint inhibitor that blocks PD-L1, they observed a synergistic effect in which over 40% of aggressive colon and ovarian cancers were cured in mice.

Watch Dr. Bartlett discuss this research in the video below, and read the journal article in Nature Communications.

JW Player goes here


March 2017 — Breast Cancer Patient-Led Advocate Group Awards UPCI Researcher with Leadership Grant

The Metastatic Breast Cancer Network is a volunteer, patient-led advocacy organization that seeks to address the unique needs and concerns of women and men who are living with metastatic or stage IV breast cancer. One of the ways in which the MBCN makes an impact in this area is by supporting metastatic breast cancer research through contributions made in memory of patients whose lives were cut short by the disease.

Steffi Oesterreich, PhD, Professor of Pharmacology & Chemical Biology, was selected as a 2017 recipient of a $100,000 Metastatic Breast Cancer Research Leadership Award from the MBCN for her important work towards understanding the molecular mechanisms of invasive lobular breast cancer (ILC). This subset accounts for 10 to 15% of all breast cancers, and was recently shown to have unique genomic alterations as well as etiological, biological, and clinical differences from the more common breast cancer subtype, invasive ductal carcinoma. With funds from the award, Dr. Oesterreich plans to examine metastatic ILC tissues to identify unique driver mutations that might be targeted by novel therapies.

A hub for ILC research, the University of Pittsburgh Cancer Institute held the first International Invasive Lobular Breast Cancer Symposium in September 2016, bringing together researchers, patients, and advocates from all over the world for discourse on ILC research and challenges.

Watch Dr. Oesterreich discuss ILC research and advocacy at UPCI in the video below, and learn more here.

JW Player goes here